The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] power transfer(63hit)

41-60hit(63hit)

  • Optimization of Resonant Capacitance in Wireless Power Transfer System with 3-D Stacked Two Receivers

    Shusuke YANAGAWA  Ryota SHIMIZU  Mototsugu HAMADA  Toru SHIMIZU  Tadahiro KURODA  

     
    BRIEF PAPER

      Vol:
    E101-C No:7
      Page(s):
    488-492

    This paper describes a top-down design methodology to optimize resonant capacitance in a wireless power transfer system with 3-D stacked two receivers. A 1:2 selective wireless power transfer is realized by a frequency/time division multiplexing scheme. The power transfer function is analytically formulated and the optimum tuning capacitance is derived, which is validated by comparing with system simulation results. By using the optimized values, power transfer efficiencies at 6.78MHz and 13.56MHz are simulated to be 80% and 84%, respectively, which are <3% worse than a conventional wireless power transfer system.

  • Far-End Reactor Matching to a Traveling Load Along an RF Power Transmission Line

    Sonshu SAKIHARA  Satoshi KITABAYASHI  Naoki SAKAI  Takashi OHIRA  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    396-401

    This paper presents a novel circuit for impedance matching to a load moving along a transmission line. This system is called FERMAT: Far-End Reactor MATching. The FERMAT consists of a power transmission line and a variable reactor at its far-end. The proposed system moves standing-wave antinodes to the position of the vehicle in motion. Therefore, the moving vehicle can be fed well at any position on the line. As a theoretical result, we derive adjustable matching conditions in FERMAT. We verified that the experimental result well agrees with the theory.

  • Robust Secure Transmit Design for SWIPT System with Many Types of Wireless Users and Passive Eavesdropper

    Pham-Viet TUAN  Insoo KOO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    441-450

    This paper studies a simultaneous wireless information and power transfer (SWIPT) system in which the transmitter not only sends data and energy to many types of wireless users, such as multiple information decoding users, multiple hybrid power-splitting users (i.e., users with a power-splitting structure to receive both information and energy), and multiple energy harvesting users, but also prevents information from being intercepted by a passive eavesdropper. The transmitter is equipped with multiple antennas, whereas all users and the eavesdropper are assumed to be equipped with a single antenna. Since the transmitter does not have any channel state information (CSI) about the eavesdropper, artificial noise (AN) power is maximized to mask information as well as to interfere with the eavesdropper as much as possible. The non-convex optimization problem is formulated to minimize the transmit power satisfying all signal-to-interference-plus-noise (SINR) and harvested energy requirements for all users so that the remaining power for generating AN is maximized. With perfect CSI, a semidefinite relaxation (SDR) technique is applied, and the optimal solution is proven to be tight. With imperfect CSI, SDR and a Gaussian randomization algorithm are proposed to find the suboptimal solution. Finally, numerical performance with respect to the maximum SINR at the eavesdropper is determined by a Monte-Carlo simulation to compare the proposed AN scenario with a no-AN scenario, as well as to compare perfect CSI with imperfect CSI.

  • Cavity Resonator Wireless Power Transfer in an Enclosed Space with Scatterers Utilizing Metal Mesh

    Ippei TAKANO  Daigo FURUSU  Yosuke WATANABE  Masaya TAMURA  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    841-849

    In this paper, we applied cavity resonator wireless power transfer (CR WPT) to an enclosed space with scatterers and revealed that high transfer efficiency at line-of-sight (LOS) and non-line-of-sight (NLOS) position in the power transmitter can be achieved by this method. In addition, we propose a method for limiting the wireless power transfer space utilizing metal mesh and show its effectiveness by experiment. First, we confirm that the constructed experimental model is working as a cavity resonator by theoretical formula and electromagnetic field analysis. Next, we calculate the maximum power transfer efficiency using a model including a plurality of scatterers by installing a power receiver at LOS and NLOS positions in the power transmitter, and it was confirmed that transfer efficiency of 30% or more could be expected even at the NLOS position. Then, we measured the frequency characteristics of a model in which one surface of the outer wall was replaced with a metal mesh, and it was clarified that the characteristics hardly changed in the power transfer frequency band. Finally, we confirmed that simultaneous communication can be performed with driving of the battery-less sensor by CR WPT, and clarify effectiveness of the proposed method.

  • Experimental Study on a 5.8 GHz Power-Variable Phase-Controlled Magnetron

    Bo YANG  Tomohiko MITANI  Naoki SHINOHARA  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    901-907

    We developed a 5.8 GHz power-variable phase-controlled magnetron (PVPCM) which controls the phase of magnetron output by a phase shifter and controls the power by the anode current of the magnetron. This method is different from the previous 2.45 GHz phase-controlled magnetron which utilizes an injection method and a phase locked loop by the anode current, since the frequency of 5.8 GHz magnetron hardly changes with the anode current. Our experiments show that the developed 5.8 GHz PVPCM had a variable output power with 1% power stability from 160 W to 329 W, the phase accuracy was nearly ±1°, and the response time was less than 100 µs. Stable output power, high phase-controlled accuracy, and fast response speed microwave sources based on the PVPCMs are suitable for phased array system for wireless power transfer.

  • Improvement in Efficiency of Underwater Wireless Power Transfer with Electric Coupling

    Yasumasa NAKA  Kyohei YAMAMOTO  Takuma NAKATA  Masaya TAMURA  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    850-857

    This paper focuses on underwater wireless power transfer with electric coupling. First, the maximum available efficiency is derived by using the S-parameters of the parallel plate coupler. The frequency which represents the maximal value of the efficiency is revealed. Further, the elevation in the efficiency in association with a reduction of the electrode size is found. It is clarified that the elevation depends on the characteristic of the water dielectric loss. From these results, the optimal electrode size that obtains the maximal value of the efficiency is provided. Finally, we fabricate the couplers by utilizing the optimal frequency and the electrode size. The efficiency of 75.8% under water is achieved.

  • Demonstration of Three-Dimensional Near-Field Beamforming by Planar Loop Array for Magnetic Resonance Wireless Power Transfer

    Bo-Hee CHOI  Jeong-Hae LEE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/01/24
      Vol:
    E100-B No:8
      Page(s):
    1449-1453

    This paper presents a capacitor-loaded 4x4 planar loop array for three-dimensional near-field beamforming of magnetic resonance wireless power transfer (WPT). This planar loop array provides three important functions: beamforming, selective power transfer, and the ability to work alignment free with the receiver. These functions are realized by adjusting the capacitance of each loop. The optimal capacitance of each loop that corresponds to the three functions can be found using a genetic algorithm (GA); the three functions were verified by comparing simulations and measurements at a frequency of 6.78MHz. Finally, the beamforming mechanism of a near-field loop array was investigated using the relationship between the current magnitude and the resonance frequency of each loop, resulting in the findings that the magnitude and the resonance frequency are correlated. This focused current of the specified loop creates a strong magnetic field in front of that loop, resulting in near-field beamforming.

  • Internal Power Loss Formulas of Lumped-Element Matching Circuits for High-Efficiency Wireless Power Transfer

    Kyohei YAMADA  Naoki SAKAI  Takashi OHIRA  

     
    PAPER

      Vol:
    E99-C No:10
      Page(s):
    1182-1189

    Internal power losses in lumped-element impedance matching circuits are formulated by means of Q factors of the elements and port impedances to be matched. Assuming that Q factors are relatively high, the above mentioned loss is expressed by a simple formula containing only the tangents of the impedances. The formula is a powerful tool for such applications that put emphasis on power efficiency as wireless power transfer. As well as the formulation, we illustrate some design examples with the derived formula: design of the least lossy L-section circuit and two-stage low-pass ladder. The examples provide ready-to-use knowledge for low-loss matching design.

  • FEM Simulations of Implantable Cardiac Pacemaker EMI Triggered by HF-Band Wireless Power Transfer System

    Naoki TANAKA  Takashi HIKAGE  Toshio NOJIMA  

     
    BRIEF PAPER

      Vol:
    E99-C No:7
      Page(s):
    809-812

    This paper describes a numerical assessment methodology of pacemaker EMI triggered by HF-band wireless power transfer system. By using three dimensional full-wave numerical simulation based on finite element method, interference voltage induced at the connector of the pacemaker inside the phantom that is used for in-vitro EMI assessment is obtained. Simulated example includes different exposure scenarios in order to estimate the maximum interference voltage.

  • A Novel Resonator Design for Q Factor Improvement Using Tightly-Coupled Parallel Coils in Coupled Magnetic Resonance Wireless Power Transfer

    Cheng YANG  Koichi TSUNEKAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:3
      Page(s):
    685-694

    This study proposes a novel resonator design that uses tightly coupled parallel coils to improve the quality factor (Q factor) in coupled magnetic resonance wireless power transfer. Depending on the characteristics of the tightly coupled parallel-connected coils, the proposed resonator can offer significantly reduced resistance with very little self-inductance loss. A double-layer spiral coil structure is used for resonator design and evaluating its characteristics. Measured results show that a resonator consisting of two identical, tightly coupled parallel double-layer spiral coils can match the Q factor of a conventional double-layer spiral coil with the same number of turns, even though its equivalent resistance is approximately 75% less. Moreover, the system power transfer performance of the resonator was measured under the impedance matching condition. To further reduce the resistance, we propose another resonator comprising of three parallel and tightly coupled double-layer spiral coils, and measure its equivalent resistance characteristics for different wire gap sizes.

  • Proposal of a New Disk-Repeater System for Contactless Power Transfer Open Access

    Yuichi SAWAHARA  Yuya IKUTA  Yangjun ZHANG  Toshio ISHIZAKI  Ikuo AWAI  

     
    PAPER

      Vol:
    E98-B No:12
      Page(s):
    2370-2375

    The authors propose “Disk-repeater” as a new structure alternative to the conventional resonator repeater. Disk-repeater has a simple structure comprised of just copper plates and wire, non-resonant structure. First, coupling coefficients are measured as functions of disk diameter and wire length to characterize the basic performance of Disk-repeater. It is explained by several experimental evidences that Disk-repeater and resonator are not magnetically coupled but electrically coupled. It is also shown that the transmission distance extends dramatically longer than that of conventional resonator repeater. Further, two-dimensional arrangement, where multiple disks are connected, shows very high efficiency and uniform transmission characteristic regardless of positions of receiving resonator. Disk-repeater gives possibility of unprecedented versatile application with the simple structure.

  • Magnetic Field Measurement for Human Exposure Assessment near Wireless Power Transfer Systems in Kilohertz and Megahertz Bands

    Satoshi ISHIHARA  Teruo ONISHI  Akimasa HIRATA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E98-B No:12
      Page(s):
    2470-2476

    A method for measuring the magnetic field strength for human exposure assessment closer than 20cm to wireless power transfer (WPT) systems for information household appliances is investigated based on numerical simulations and measurements at 100kHz and 6.78MHz. Four types of magnetic sources are considered: a simple 1-turn coil and three types of coils simulating actual WPT systems. A magnetic sensor whose cross sectional area is 100cm2 as prescribed in International Electrotechnical Commission 62233 is used. Simulation results show that the magnetic field strength detected by the magnetic sensor is affected by its placement angle. The maximum coefficient of variation (CV) is 27.2% when the magnetic source and the sensor are in contact. The reason for this deviation is attributable to the localization of the magnetic field distribution around the magnetic source. The coupling effect between the magnetic source and the sensor is negligible. Therefore, the sensor placement angle is an essential factor in magnetic field measurements. The CV due to the sensor placement angle is reduced from 21% to 4% if the area of the sensor coil is reduced from 100 to 0.75cm2 at 6.78MHz. However, the sensitivity of the sensor coil is decreased by 42.5dB. If measurement uncertainty that considers the deviation in the magnetic field strength due to the sensor placement angle is large, the measured magnetic field strength should be corrected by the uncertainty. If the magnetic field distribution around the magnetic source is known, conservative exposure assessments can be achieved by placing the magnetic sensor in locations at which the spatial averaged magnetic field strengths perpendicular to the magnetic sensor coils become maximum.

  • Quasistatic Approximation for Exposure Assessment of Wireless Power Transfer Open Access

    Ilkka LAAKSO  Takuya SHIMAMOTO  Akimasa HIRATA  Mauro FELIZIANI  

     
    INVITED PAPER

      Vol:
    E98-B No:7
      Page(s):
    1156-1163

    Magnetic resonant coupling between two coils allows effective wireless transfer of power over distances in the range of tens of centimeters to a few meters. The strong resonant magnetic field also extends to the immediate surroundings of the power transfer system. When a user or bystander is exposed to this magnetic field, electric fields are induced in the body. For the purposes of human and product safety, it is necessary to evaluate whether these fields satisfy the human exposure limits specified in international guidelines and standards. This work investigates the effectiveness of the quasistatic approximation for computational modeling human exposure to the magnetic fields of wireless power transfer systems. It is shown that, when valid, this approximation can greatly reduce the computational requirements of the assessment of human exposure. Using the quasistatic modeling approach, we present an example of the assessment of human exposure to the non-uniform magnetic field of a realistic WPT system for wireless charging of an electric vehicle battery, and propose a coupling factor for practical determination of compliance with the international exposure standards.

  • Experiment on Driving a Low-Power DC Motor by Microwave Power Transfer in Continuous-Wave and Pulsed-Wave

    Yong HUANG  Tomohiko MITANI  Takaki ISHIKAWA  Naoki SHINOHARA  

     
    PAPER-Power Applications

      Vol:
    E98-C No:7
      Page(s):
    693-700

    In order to efficiently drive a low-power DC motor using microwave power transfer (MPT), a compact power-receiving device is developed, which consists of a rectenna array and an improved DC-DC converter with constant input resistance characteristics. Since the conversion efficiency of the rectenna is strongly affected by the output load, it is difficult to efficiently drive a dynamic load resistance device such as DC motor. Using both continuous-wave (CW) and pulsed-wave MPT, experiments are carried out on driving the DC motor whose load resistance is varying from 36 to 140 Ω. In the CW case, the measured overall efficiency of the power-receiving device is constant over 50% for the power density of 0.25 to 2.08 mW/cm2. In particular, the overall efficiency is 62%, 70.8% for the power density of 0.25, 0.98 mW/cm2 where the received power of the single antenna is 13, 50 mW, respectively. In the pulsed-wave case, the measured overall efficiency is over 44% for a duty ratio of 0.2 to 1 for the power density of 0.98 mW/cm2.

  • Rectenna Design and Signal Optimization for Electromagnetic Energy Harvesting and Wireless Power Transfer Open Access

    Apostolos GEORGIADIS  Ana COLLADO  Kyriaki NIOTAKI  

     
    INVITED PAPER

      Vol:
    E98-C No:7
      Page(s):
    608-612

    This work addresses two key topics in the field of energy harvesting and wireless power transfer. The first is the optimum signal design for improved RF-DC conversion efficiency in rectifier circuits by using time varying envelope signals. The second is the design of rectifiers that present reduced sensitivity to input power and output load variations by introducing resistance compression network (RCN) structures.

  • Analysis and Performance Improvement of Independent Electric Coupled Resonance WPT System with Impedance Transformer

    Cheng YANG  Koichi TSUNEKAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:4
      Page(s):
    630-637

    Wireless power transfer (WPT) based on electric coupled resonance can withstand a great level of variability in antenna separation. In this paper, we propose an independent electrical coupled resonance WPT system to further increase such systems' power transfer distance and ensure flexibility in the antenna location. The proposed system's power transfer function, critical coupling point, and resonance frequency splitting are investigated via the equivalent circuit, simulation, and experiment. Moreover, the input impedance characteristic of two electric coupled resonance antennas is also analyzed according to the transfer distance. In the region of under coupled, an appropriate impedance matching method is required to achieve effective power transfers. Here, we proposed a fixed configuration type matching loop with a series-connecting variable capacitance that can be added into both the source and load antennas. Experimental results demonstrate that the proposed matching loop can convert the two electric coupled resonance antennas' input impedance to the feed port impedance very well at varying transfer distances; these results are in good agreement with the simulation results.

  • Data Transmission Using Transmitter Side Channel Estimation in Wireless Power Transfer System

    Kazuki SUGENO  Yukitoshi SANADA  Mamiko INAMORI  

     
    PAPER

      Vol:
    E98-A No:2
      Page(s):
    589-596

    In recent years, wireless power transfer has been attracting a great deal of attention. In order to realize efficient power transfer, it is necessary to communicate data such as a frequency, required power, or error tolerance. In the proposed system, because of the use of the same antennas for power transmission and data transmission, the frequency response of a channel for the data transmission changes owing to load fluctuation and the distance between antennas. This paper investigates data transmission performance in the wireless power transfer system with frequency response estimation at the transmitter side. The numerical results obtained through computer simulation show that the proposed scheme can estimate the frequency response of the channel and the difference between the expected bit error rate (BER) and the BER with the estimation error is less than 0.5dB at the BER of 10-3.

  • Performance of Data Transmission in Wireless Power Transfer with Coil Displacements

    Motoki IIDA  Kazuki SUGENO  Mamiko INAMORI  Yukitoshi SANADA  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:4
      Page(s):
    1016-1020

    This letter investigates the relationship between antenna position and data communication performance in a magnetic resonance wireless power transfer (MRWPT) system. In MRWPT information such as the types of equipments, the required amount of electrical power, or the timing of power transfer should be exchanged. It is assumed here that power transfer coils in the MRWPT system are employed as antennas for data communication. The frequency characteristics of the antennas change due to coil displacements. The power transfer coils are modeled as a band pass filter (BPF) and the frequency characteristics of the filter are presented in this letter. The characteristics of the filter are derived through circuit simulation and resulting data communication performance is evaluated. Numerical results obtained through computer simulation show that the bit error late (BER) performance can be improved by controlling the center frequency of the communication link.

  • AC Resistance of Copper Clad Aluminum Wires

    Ning GUAN  Chihiro KAMIDAKI  Takashi SHINMOTO  Ken'ichiro YASHIRO  

     
    PAPER-Electromagnetic Analysis

      Vol:
    E96-B No:10
      Page(s):
    2462-2468

    Recently, wireless power transfer has attracted much attention for power supplying on not only small electric devices but also large equipments such as electric and hybrid vehicles. Coils are important components in such power transfer systems and their AC resistance is a key factor to determine the transferring efficiency. The AC resistance of wires used in the coils is required to be as lower as possible for high efficiency systems. Copper clad aluminum (CCA) wire which has an aluminum (Al) core surrounded by a thin copper (Cu) layer has been proposed for this purpose. CCA wires are not only light-weight and easy for soldering but also show lower AC resistance than commonly used Cu wires on certain conditions. In this paper, the AC resistance caused by the skin and proximity effects of a CCA wire with circular cross-section is numerically analyzed. The condition that CCA wires are superior to Cu wires in view of AC resistance is discussed. Simulated results are compared with experiments on fabricated coils and good agreement is obtained. It is actually verified that coils wound by CCA wires have lower AC resistance than those by Cu wires under some circumstances, especially at high frequencies.

  • An Investigation on Self-Resonant and Capacitor-Loaded Helical Antennas for Coupled-Resonant Wireless Power Transfer

    Hiroshi HIRAYAMA  Tomohiro AMANO  Nobuyoshi KIKUMA  Kunio SAKAKIBARA  

     
    PAPER-Antennas

      Vol:
    E96-B No:10
      Page(s):
    2431-2439

    Self-resonant helical antenna and capacitor-loaded helical antenna of the same dimension for coupled-resonant wireless power transfer is discussed. At first, fundamental difference of the self-resonant and the capacitor-loaded antenna is demonstrated by calculating electric- and magnetic-coupling coefficient. Next, performance of the helical antennas are discussed from viewpoints of 1) transmission efficiency, 2) undesired emission, 3) near-field leakage, 4) effect of human body and 5) effect of conductivity. We have found that the self-resonant helical antenna has an advantage in low transmission loss due to a conductivity of wire. On the other hand, the capacitor-loaded antenna has an advantage in low emission, long transfer distance, and low influence of resonant frequency from human body. This is because both electric-field coupling and magnetic-field coupling are dominant for the self-resonant antenna while only magnetic-field coupling is dominant in the capacitor-loaded antenna.

41-60hit(63hit)